...Integrating multiple-variable functions in a non-stardard domain, of course!
hahahahahaha! XD (I was kidding!)
I was refering to COUNT, really. And there are strategies to count that even allow to express the number you want to reach directly in our ten-digit positional numeration system...
An easy example of this is... ...try to count how many smileys are there in following line:
☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺.
If you display the smileys as above, you'll have to count them one-by-one to get the answer: there are 28 of them...
But if you display them in other manners, it could be easier to deduce it with just one glance:
☺☺ ☺☺
☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ Here we have two groups of ten each one, AND eight more:
☺☺ ☺☺ ☺☺
2 8
Have a look to another example, with a number a bit higher (I recommend you to zoom out as much as your internet browser allows to see how the groups are displayed):
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺
3 7 5
groups of a hundred groups of ten five units
In fact, this idea is the one behind the invention of decimal system. Every order of units follows the pattern of an (usually incomplete) rectangle with five rows and two columns of groups of an order below, or just elements in the easiest case.
Rafa is as this exercise is to have groups. But do not get to do.
ReplyDeleteIt is very difficult. I don't know.
ReplyDeleteSorry, Rafa...
Rafa, that most difficult thing ... Difficult to understand, but if you focus you take it well.
ReplyDeleteExplain the problem in class, please.
ReplyDeleteXD I don´t know.
ReplyDeleteRafa no estoy segura si esto es así , es que no hay pregunta.
ReplyDeleteYo creo que lo que tu querias preguntar es que cuantos emoticonos hay ,y enseñarnos la facilidad de hacer grupos.
Hay 375 emoticonos , porque 15 grupos de 20 emoticonos sería 300 es decir 3 centenas,por otra parte hay 3 grupos de 20 y uno de 10 ya que su suma da 70 es decir 7 Decenas. Y por ultimo hay 5 emoticonos que es igual a 5 unidades. Si juntamos todo da 375 unidades.
////////////////////////////////
In inglish :
Rafa not sure if this is so, is there is no question.
I think what you want to ask is how many emoticons there, and show the ease of doing groups.
There are 375 emoticons, because 15 groups of 20 emoticons would be 300 or 3 hundreds, then there are 3 groups of 20 and one 10 since their sum is 70 or 7 tens. And finally there are 5 emoticons that is 5 units. If given 375 units all together.